Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC

نویسندگان

  • Haifeng Liang
  • Xiaoling Zhao
  • Xiaolei Yu
  • Yajing Gao
  • Jin Yang
  • Hossam A. Gabbar
چکیده

In recent years, distributed generation and a large number of sensitive AC and DC loads have been connected to distribution networks, which introduce a series of challenges to distribution network operators (DNOs). In addition, the advantages of DC distribution networks, such as the energy conservation and emission reduction, mean that the voltage source converter based multi-terminal direct current (VSC-MTDC) for AC/DC distribution systems demonstrates a great potential, hence drawing growing research interest. In this paper, considering losses of the reactor, the filter and the converter, a mathematical model of VSC-HVDC for the load flow analysis is derived. An AC/DC distribution network architecture has been built, based on which the differences in modified equations of the VSC-MTDC-based network under different control modes are analyzed. In addition, corresponding interface functions under five control modes are provided, and a back/forward iterative algorithm which is applied to power flow calculation of the AC/DC distribution system including VSC-MTDC is proposed. Finally, by calculating the power flow of the modified IEEE14 AC/DC distribution network, the efficiency and validity of the model and algorithm are evaluated. With various distributed generations connected to the network at appropriate locations, power flow results show that network losses and utilization of transmission networks are effectively reduced. OPEN ACCESS Energies 2015, 8 8392

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Flow Solution on Multi-Terminal HVDC Systems: Supergrid Case

High Voltage Direct Current (HVDC) systems offer distinct advantages for the integration of offshore wind farms to inland grid system. HVDC transmission system based on Voltage Source Converter (VSC) enables multi-terminal use HVDC for the integration of large-scale wind power in the North Sea. That network requires a special formulation for power flow analysis as opposed to the conventional me...

متن کامل

Control , Dynamics and Operation of Multi - terminal VSC - HVDC Transmission Systems

In recent years, there has been an increased development and deployment of renewable energy resources to meet the ever increasing electric power demand and to limit the use of fossil fuels. This has spurred offshore wind farm development, particularly in the North Sea, due to the vast offshore wind energy potential. Large scale wind farms in the North Sea pose grid integration challenges such a...

متن کامل

Improved Adaptive Droop Control Design for Optimal Power Sharing in VSC-MTDC Integrating Wind Farms

With the advance of insulated gate bipolar transistor (IGBT) converters, Multi-Terminal DC (MTDC) based on the voltage-source converter (VSC) has developed rapidly in renewable and electric power systems. To reduce the copper loss of large capacity and long distance DC transmission line, an improved droop control design based on optimal power sharing in VSC-MTDC integrating offshore wind farm i...

متن کامل

DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC) grids based on an optimal power flow (OPF) procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage ...

متن کامل

Fast Frequency Response from Offshore Multi-terminal VSC-HVDC Schemes

This paper analyses the frequency support characteristics of multi-terminal VSC-HVDC (MTDC) schemes using the energy transferred from wind turbine rotating mass and other AC systems. An alternative coordinated control (ACC) scheme, which gives priority to a frequency versus active power droop fitted to onshore VSCs is proposed to: (i) transfer wind turbine recovery power to undisturbed AC grids...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015